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ABSTRACT 

Flood forecasting is the study of rainfall patterns, catchment characteristics, and river hydrographs to predict the 

average frequency of flood occurrence in the future. Time-series model is used by representing a stochastic 

process, to estimate future values based on previously observed values. Flood may occur due to various causes 

such as inadequate design capacity of a storage to accommodate a certain amount of water, human activities like 

deforestation, lack of awareness in maintaining an early warning system for floods, and also heavy precipitation. 

In this study, discharge values of ten rivers were taken to be analysed by phases from collecting, manipulating, 

fitting the ARMA model, until the step of forecasting and analysing models. By using Mean Absolute Percent Error 

(MAPE), four of the models were analysed to be good models with percentage error below 20 percent, four more 

models are considered as tolerable models with percentage error between 20 and 40 percent, and another two 

models are rejected ones with value of percentage error exceeding 40 percent. By carrying out this study, it is 

recommendable for this method to be used in implementing other measures like early warning system and design 

of water storage. Flood forecasting is thus crucial in ensuring sustainability of human development.  
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INTRODUCTION 

Over the years, floods are the most common and widespread of all natural hazards. Some floods develop over a 

period of days, while flash floods can result in raging waters in just a few minutes. Flash floods can be a deadly 

cargo of rocks, mud, and other debris and can occur without any visible sign of rainfall. Every region of every 

state is at risk from the hazards of flooding. A flooding situation is not a daily occurrence. However, flood 

forecasting operations must, of necessity, be a continuous activity. It is carried out from day to day even when the 

possibility of a flood is highly improbable. This mode of operation enables flood forecasters to pinpoint the 

beginning of a potential flood-generating situation. 

Flood forecasting is the study of rainfall patterns, catchment characteristics, and river hydrographs to predict the 

future average frequency of occurrence of flood events. Flood predictions seek to estimate the probable discharge 

that, on average, will be exceeded any particular period. Flood may occurs due to various cause such as inadequate 

design capacity of a storage to accommodate a certain amount of water, human activities like deforestation, lack 

of awareness in maintaining an early warning system for floods, and also heavy precipitation. 

In statistics, signal processing, econometrics and mathematical finance, a time series is a sequence of data points, 

measured typically at successive times spaced at uniform time intervals. Time series analysis comprises methods 

for analyzing time series data in order to extract meaningful statistics and other characteristics of the data. Time 

series forecasting is the use of a model to forecast future events based on known past events to predict data points 

before they are measured. 

Flood forecasting is an important component of flood warning, where the distinction between the two is that the 

outcome of flood forecasting is a set of forecast time-profiles of channel flows or river levels at various locations, 

while “flood warning” is the task of making use of these forecasts to make decisions about whether warnings of 

floods should be issued to the general public or whether previous warnings should be rescinded or retracted. 
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At the beginning of 1960’s the formal development of stochastic modeling has started with the introduction and 

application of autoregressive models for annual and seasonal streamflows (Thomas and Fiering, 1962; Yevjevich, 

1963). It is then leads to extensive research efforts toward improving those early concepts and models (Salas, 

1993 Chatfield, 2000; Young, 2002; Damle, 2005; Young, 2006; Arselan, 2012; Vaghela and Vaghela, 2014; 

Meng et al., 2019); providing physical justification of some models, introducing alternative models and studying 

their impacts in water related to these various aspects is extensive and has been reviewed by hydrologists. Several 

stochastic models have been proposed in the past for modeling hydrologic time series. Although each model has 

its own merit and some of them can be successfully applied in operational hydrology, they do have limitations. 

They all have been criticized for one or more of the following reasons:  

i. not being able to reproduce short-term dependence,  

ii. not being able to reproduce long-term dependence,  

iii. difficulty in estimating parameters,  

iv. limitations for generating large samples of synthetic data,  

v. lack of physical basis, and  

vi. too many parameters. 

Time series model is a mathematical model representing a stochastic process. It has a certain mathematical form 

or structure and a set of parameters. If X is normal with mean µ and variance σ2 , the time series model can be 

conveniently written as  

Xt = µ + σ εt , t = 1,2, …      (1) 

Where εt is also normal with mean zero and variance one and ε1, ε2, … are independent. In Eq. (1) the model has 

the parameters µ and σ and since they are constants the model is stationary. The structure of the model is simple 

since the variable Xt is a function only of the independent variable εt and so Xt is also independent. 

A time series model with dependence structure can be formed as 

εt = φ εt-1 + ξt       (2) 

where ξt is an independent series with mean zero and variance (1 – φ2 ) , εt is the dependent series an φ is the 

parameter of the model. In Eq. (2) εt is a dependent series because in addition to being a function of ξt, it is a 

function of the same variable ε at time t-1.  

Since the parameters of the above models are constants, the models are stationary representing stationary time 

series or stationary stochastic processes. Non-stationary models would result if such parameters would vary with 

time. 

Time series modeling is a process which can be simple or complex, depending on the characteristics of the 

available sample series, on the type for model to use and on the selected techniques of modeling. In general, time 

series modeling can be organized in the following stages (Box and Jenkins, 1970): 

i. The selection of the type of model, 

ii. The identification of the form of the model, 

iii. The estimation of the model parameters, and 

iv. The diagnostic check of the model. 

As an example of the physical justification of autoregressive and moving average (ARMA) models for annual 

streamflow simulation, consider a watershed system as in Figure 3.0, where the variables are of annual values. 
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Then the annual streamflow zt is composed of groundwater contribution equal to c t-1 and surface runoff equal 

to dxt (Thomas and Fiering, 1962). That is 

Zt = c t-1 + d xt       (3) 

The continuity equation for the groundwater storage t gives 

t = t-1 + a xt – c t-1        

or 

t = (1-c) t-1 + a xt        (4) 

Combining Eqs. (3) and (4) Salas et al. (1980) showed that the model for the annual streamflow zt can be written 

as Eq. (5) which has the form of an independent series.  

zt = (1-c) zt-1 + d xt – [ d (1-c) – ac ] xt-1      (5) 

Autoregressive moving average (ARMA) model is a forecasting model or process in which both autoregression 

analysis and moving average methods are applied to a well-behaved time series data. ARMA assumes that the 

time series is stationary-fluctuates more or less uniformly around a time-invariant mean. Non-stationary series 

need to be differenced one or more times to achieve stationarity. ARMA model forms a class of linear time series 

models which are widely applicable and parsimonious in parameterization. By allowing the order of an ARMA 

model to increase, one can approximate any linear time series model with desirable accuracy. 

The notation ARMA(p, q) refers to the model with p autoregressive terms and q moving-average terms. This 

model contains the AR(p) and MA(q) models, 

Xt = c + εt + Σqi=1 φi xt-i + Σqi=1 θi εt-i     (6) 

In statistics and signal processing, an autoregressive (AR) model is a type of random process which is often used 

to model and predict various types of natural phenomena. The autoregressive model is one of a group of linear 

prediction formulas that attempt to predict an output of a system based on the previous outputs. The notation 

AR(p) indicates an autoregressive model of order p. The AR(p) model is defined as 

Xt = c + Σqi=1 φi xt-i + εt     (7) 

where φ1 … φp are the parameters of the model, c is a constant (often omitted for simplicity) and εt is white noise. 

The constant term is omitted by many authors for simplicity. 

In time series analysis, the moving-average (MA) model is a common approach for modeling univariate time 

series models. The notation MA(q) refers to the moving average model of order q: 

Xt = µ + εt + θ1 εt-1 + … + θq εt-q      (8) 

where μ is the mean of the series, the θ1, ..., θq are the parameters of the model and the εt, εt−1,... are white noise 

error terms. The value of q is called the order of the MA model. That is, a moving-average model is conceptually 

a linear regression of the current value of the series against previous (unobserved) white noise error terms or 

random shocks. The random shocks at each point are assumed to come from the same distribution, typically a 

normal distribution, with location at zero and constant scale. The distinction in this model is that these random 

shocks are propagated to future values of the time series. Fitting the MA estimates is more complicated than with 

autoregressive models (AR models) because the error terms are not observable. This means that iterative non-

linear fitting procedures need to be used in place of linear least squares. MA models also have a less obvious 

interpretation than AR models. 

Sometimes the autocorrelation function (ACF) and partial autocorrelation function (PACF) will suggest that a 

MA model would be a better model choice and sometimes both AR and MA terms should be used in the same 

model. In time series analysis, the partial autocorrelation function (PACF) or PARtial autoCORrelation 

(PARCOR) plays an important role in data analyses aimed at identifying the extent of the lag in an autoregressive 
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model. Given a time series zt, the partial autocorrelation of lag k, denoted α(k), is the autocorrelation between zt 

and zt + k with the linear dependence of zt + 1 through to zt + k − 1 removed; equivalently, it is the autocorrelation 

between zt and zt − k that is not accounted for by lags 1 to k − 1, inclusive. 

α (1)=Cor ( z_(t ),z_(t+1))        (9) 

α (k)=Cor 〖[ z〗_(t+k )- P_(t,k) (z_(t+k)) , z_(t )- P_(t,k) (z_t)] , for k ≥ 2,  (10) 

where Pt,k(x) denotes the projection of x onto the space spanned by zt+1 ,  … , zt+k+1. 

After a time series has been stationarized by differencing, the next step in fitting an ARIMA model is to determine 

whether AR or MA terms are needed to correct any autocorrelation that remains in the differenced series. Software 

like Minitab can be used to try some different combinations of terms and see what works best. By looking at the 

autocorrelation function (ACF) and partial autocorrelation (PACF) plots of the differenced series, you can identify 

the numbers of AR and/or MA terms that are needed. In ACF plot, it is merely a bar chart of the coefficients of 

correlation between a time series and lags of itself. The PACF plot is a plot of the partial correlation coefficients 

between the series and lags of itself.  

In general, the "partial" correlation between two variables is the amount of correlation between them which is not 

explained by their mutual correlations with a specified set of other variables. For example, if we are regressing a 

variable Y on other variables X1, X2, and X3, the partial correlation between Y and X3 is the amount of correlation 

between Y and X3 that is not explained by their common correlations with X1 and X2. This partial correlation can 

be computed as the square root of the reduction in variance that is achieved by adding X3 to the regression of Y 

on X1 and X2. (Luce, 1992) 

There are several steps need to be considered in processing this study. Figure 1 is the flowchart of the study 

showing from the starting point, onto the process, and the finishing point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Flowchart of the study 
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In order to determine if the values are suitable and could fir the ARMA model, several stages were introduced to 

keep a smooth flow.  A systematic approach to hydrologic time series modeling may be composed of six main 

phases (Salas et al., 1980): 

i. Identification of model composition, 

ii. Selection of model type, 

iii. Identification of model form, 

iv. Estimation of model parameters, 

v. Testing goodness of fit of the model, and 

vi. Evaluation of uncertainties. 

It is important to remember the difference between a model and a process. In practice which ARMA process has 

generated a given realization could not be observed, so a trial-and-error procedure was utilised. In the ‘trial’ part,  

the estimated acf and pacf calculated from the realization. Some ARMA generation mechanisms were generated 

to fit the available data adequately. A model is different from a process where a process is the true but unknown 

mechanism that has generated a realization, while a model is only an imitation or representation of the process. A 

model was selected based on the adequacy with respect to the available data. 

Following are the characteristics to be considered in deciding if it is a good model. (Pankratz, 1983) 

i. It is parsimonious (uses the smallest number of coefficients needed to explain the available data) 

A parsimonious model fits the available data adequately without using any unnecessary coefficient. For example, 

if an AR(1) model and an AR(2) model are essentially the same in all other respects, we would select the AR(1) 

model because it has one less coefficient to estimate. 

Parsimonious models generally produce better forecasts. It is a model which only approximates the true process 

as long as the model explains the behavior of the available realization in a parsimonious and statically adequate 

manner.  

ii. It is stationary (has AR coefficients which satisfy some mathematical inequalities) 

ARMA method applies only to a realization that is stationary, meaning it has a constant mean, variance and acf. 

Stationarity for a model can be check by seeing if the estimated AR coefficients satisfy some mathematical 

inequalities. 

iii. It is invertible (has MA coefficients which satisfy some mathematical inequalities)  

Invertibility is algebraically similar to stationarity. The invertibility can be check by seeing if the estimated MA 

coefficients satisfy some mathematical inequalities.  

iv. It has estimated coefficients (Ø’s and θ’s) of high quality: 

a) Absolute t-values about 2.0 or larger, 

As we want to avoid a forecasting model which represents only a chance relationship, so each Ø or θ coefficient 

have an absolute t-statistic of about 2.0 or larger. This means each estimated Ø or θ coefficient should be about 

two or more standard errors away from zero. 

b) Ø’s and θ’s not too highly correlated. 

Estimated Ø and θ coefficients should not be too highly correlated with each other. If they are tend to be unstable 

even if they are statistically significant. 
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v. It has uncorrelated residuals 

A good model has statistically independent residuals. The assumption was that random shocks (at) are independent 

in a process. The random shocks were not observed, estimates of them can be made at the estimation stage. The 

t are called residuals of a model. The shocks were tested for independence by constructing an acf using the 

residuals as input data. If the residuals are statistically independent, this is important evidence that the model 

cannot be improved further by adding more AR or MA terms. 

vi. It fits the available data (the past) well enough at the estimation stage: 

a) Root-mean-squared error (RMSE) is acceptable, 

b) Mean absolute percent error (MAPE) is acceptable. 

No model can fit the data perfectly because there is a random shock element present in the data. These two 

measures of closeness of fit; root-mean-squared error (RMSE) and mean absolute percent error (MAPE) need to 

be assured that they are acceptable.  

vii. It forecasts the future satisfactorily. 

Above all, a good model has sufficiently small forecast errors. Although a good forecasting model will usually fit 

the past well, it is even more important that it forecast the future satisfactorily. 

Mean Absolute Percent Error (MAPE) is commonly used in quantitative forecasting methods because it produces 

a measure of relative overall fit. MAPE is used in this study, to determine the fit of a model. It usually expresses 

accuracy as a percentage, and is defined by the formula: 

MAPE   =  Σ |((y_t-ý_t ))/y_t |/n x 100  ( y_t≠0 )   (11) 

where yt is the actual value and ýt is the forecast value. (Cryer, 1986) 

The difference between yt and ýt is divided by the actual value yt again. The absolute value in this calculation is 

summed for every fitted or forecasted point in time and divided again by the number of fitted points n. multiplying 

by 100 makes it a percentage error. A good forecasting model would usually fit the calculation by having the 

percentage of not more than 20. 

 

RESULT AND DISCUSSION 

All ten rivers will be evaluated, from first, picking the smallest mean square (MS) value of all zero to five model 

possibilities, second, comparing the chi-square and degree of freedom value, and next, gaining the percentage 

error from MAPE later on. The models will then be categorized under three different classes which are the good 

models, tolerable models and rejected models. 

There are several steps in evaluating the data of the rivers. For Ara River: 

Differentiating mean square (MS) value of the models 

The model with the smallest MS value will be taken into consideration. In order to identify which model to be 

picked, Minitab is used to generate the data, and compare the model possibilities starting from (0,1), (0,2), (0,3) 

… (5,5).  

  

 

Comparing the value of chi-square, x2 with degree of freedom (DF) 
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Based on table of Percentage Point of the Chi-Square, x2 Distribution, the value of chi-squared must always be 

assured to be less than DF. 

The percentage error is to be obtained by using MAPE’s formula. (Cryer, 1986) 

MAPE   =  ∑_(t=1)^n▒|((y_t-ý_t ))/y_t |/n x 100  ( y_t≠0 ) 

A model is a good fit when the percentage error is not more than 20%. 

A model is considered a good fit when it satisfies the mathematical inequalities. A good model also has statistically 

independent residuals. In this case, a model is perfectly fit when it has a low percentage error when generating it 

from the MAPE and the value should not be more than 20%. This means the model is able to forecast the future 

satisfactorily. 

After analyzing the data from Ara River has measures of accuracy of 18.30% (as shown in Table 1).  

CONCLUSION 

It can be concluded that the combination of AR and MA model could form a perfect whole ARMA model with 

the help of a well-behaved time series data. There are several processed that need to be considered to determine 

if a model is perfectly or poorly fit. Models with measures of accuracy less than 20% makes good models, while 

tolerable models are those with measures of accuracy more than 20% but less than 40%. When it exceeds 40%, it 

is then categorized as rejected models. By generating a time-series model: 

i. This method could effectively forecast the flood occurrence in the near future. Since this study 

forecast the annual river flow, it is applicable to predict the river flow up to the next 5 years. Thus it 

is recommended to bring improvements to the flood prediction.  

ii. By fulfilling the main objectives of this study, this method of time-series model could also be very 

useful in water resource planning, such as for water storage system e.g dams, channels, retention 

tanks and many others. The ability to accumulate a large amount of water could prevent it from 

overflowing that will then lead to the occurrence of flood.  

iii. This method is recommended to achieve an adequate early warning system. When the flow or 

discharge of a certain river is already known, it is easier to prepare a system that could alert the 

community and provide more time to evacuate the area. In achieving all these conditions, it is hoped 

that the risk could be sufficiently controlled in the future. 

By carrying out this study, it is recommended that this method be used in implementing other measures like early 

warning system and design of water storage. Flood forecasting is thus crucial in ensuring sustainability of human 

development.  
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Table 1: Ara River 
 

RIVER 

(MODEL) 
AUTOCORRELATION FUNCTION ( ACF) 

PARTIAL AUTO CORRELATION 

FUNCTION (PACF) 
MODEL ADEQUENCY RESIDUAL 
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Final Estimates of Parameters 

 

Type         Coef  SE Coef      T      P 

AR   1     0.3991   0.2896   1.38  0.187 

AR   2     0.3965   0.2553   1.55  0.140 

AR   3    -0.1694   0.2874  -0.59  0.564 

MA   1    -0.3795   0.2983  -1.27  0.222 

MA   2     0.0671   0.3377   0.20  0.845 

MA   3     0.1840   0.3632   0.51  0.619 

MA   4     0.9741   0.3008   3.24  0.005 

Constant   21.423    1.708  12.55  0.000 

Mean       57.317    4.569 

 

Number of observations:  24 

Residuals:    SS =  7417.86 

(backforecasts excluded) 

              MS =  463.62  DF = 16 

 

Modified Box-Pierce (Ljung-Box) Chi-

Square statistic 

 

Lag            12  24  36  48 

Chi-Square    9.3   *   *   * 

DF              4   *   *   * 

P-Value     0.055   *   *   * 
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